James Hutton, el blasfemo que reveló que la verdad sobre la Tierra no estaba en la Biblia y nos dio el tiempo profundo

Torridon, en el noroeste de las Tierras Altas de Escocia, el paisaje más antiguo de Gran Bretaña.

Torridon, en el noroeste de las Tierras Altas de Escocia, es el paisaje más antiguo de Gran Bretaña. GETTY IMAGES

El paisaje de Escocia oculta en las montañas y valles la historia de nuestro planeta. Pero no fue sino hasta la década de 1750 que un hombre pudo leerla. Ensambló pruebas desconcertantes y descubrió las fuerzas que le dan forma a nuestro mundo.

Se llamaba James Hutton. Era divertido, obsceno y un poco rudo. Le encantaba el whisky, las mujeres y debatir nuevas ideas.

Y tuvo una idea revolucionaria que cambió la forma en que pensamos sobre el planeta e incluso la manera en que pensamos acerca de nosotros mismos.

Fue quien nos dio el concepto de tiempo profundo.

Comic de Graeme McNeeDerechos de autor de la imagen GRAEME MCNEE
Comic de Graeme McNeeDerechos de autor de la imagen GRAEME MCNEE

El hombre que inició esta revolución científica creció en la capital de Escocia, Edimburgo.

Cuando era joven James Hutton, las colinas alrededor de su ciudad natal le despertaron la curiosidad acerca de cómo se formó la Tierra.

En 1747, Hutton era un joven graduado de medicina con un interés inusualmente amplio en todo el mundo natural.

Al estudiar sus orígenes descubrió que la autoridad aceptada no venía de la ciencia sino de la teología.

El único texto de geología disponible era la Biblia.

En ese tiempo había ediciones que hasta daban la fecha exacta en la que Dios creó la Tierra y los mares: el sábado 22 de octubre del año 4004 a.C.

Hutton creía en Dios. Pero inusualmente para un hombre de esa época, no estaba comprometido con una interpretación literal de la Biblia. Él creía que Dios había creado un mundo que tenía un sistema de leyes naturales.

Cómic de Graeme McNeeDerechos de autor de la imagen GRAEME MCNEE

Los errores de la juventud

¿Te acuerdas que dijimos que era mujeriego?

Pues curiosamente eso tuvo que ver con el desarrollo de la entonces aún no establecida ciencia de la geología.

Su amante quedó embarazada y se desató un escándalo.

A ella se la llevaron a Londres a dar a luz. A él lo exiliaron de Edimburgo para limitar el daño a la reputación de su familia.

A la edad de 26 años, Hutton se vio obligado a hacer una nueva vida en una pequeña granja familiar en desuso en el sur de Escocia.

Pero en esa granja remota se desencadenaron sus brillantes ideas sobre el planeta.

Lo que el agua se llevó

Arrollo en finca de Hutton
El agua de la lluvia arrastraba tierra hasta los ríos que se la llevaban al mar constantemente. ¿Se iba a gastar el suelo?

Era un lugar sombrío, lluvioso y azotado por el viento que tuvo que convertir en una granja de trabajo rentable. Eso implicaba tener que cavar y limpiar las zanjas de drenaje constantemente.

Por esas zanjas, la lluvia se llevaba el precioso suelo de sus campos río abajo.

Esa incesante erosión de la tierra preocupó seriamente a Hutton pues pensó que si la tierra constantemente era arrastrada, eventualmente no habría nada para cultivar y, en última instancia, la gente moriría de hambre.

Parecía que Dios había hecho un mundo destinado a ser completamente estéril.

Pero eso no tenía sentido: Dios seguro había diseñado un planeta que pudiera reconstruirse.

La pregunta era: ¿cómo?

El gran sistema de la tierra

Hutton observó que las rocas tenían cientos de capas sutilmente distintas.

Rocas con capas
Las rocas expuestas al lado de los ríos tenían capas sutilmente distintas.

Comprendió que eran bandas de sedimentos que el agua había traído y depositado en diferentes momentos, año tras año, y que lentamente se compactaban para hacer la roca.

Recipiente de vidrio con tierra de diferentes colores.
Es como ir poniendo tierra de diferentes colores en un recipiente de vidrio: la tierra que la lluvia llevaba al río, se iba acumulando y compactando poco a poco… muy poco a poco.

Entendió que la creación y la destrucción de la tierra no son acontecimientos repentinos y dramáticos del pasado oscuro y bíblico, sino acciones lentas e imperceptibles que se suceden todo el tiempo.

La tierra era creada a partir de los escombros del pasado.

El ardiente núcleo

A la edad de 41 años, su tiempo en el exilio había terminado.

Regresó a la ciudad de su juventud. Era la época de la Ilustración escocesa. Edimburgo era la capital intelectual del mundo y Hutton la aprovechó al máximo.

Esta atmósfera abierta de convivencia era perfecta para airear su gran idea.

Cómic de Graeme McNeeDerechos de autor de la imagen GRAEME MCNEE
Cómic de Graeme McNeeDerechos de autor de la imagen GRAEME MCNEE

Hutton sabía que no todas las rocas tenían en capas de sedimento, así que debía haber otras maneras en las que se formaban.

Le faltaba un pedazo grande del rompecabezas y lo encontró gracias a otra gran mente de la Ilustración escocesa: su amigo James Watt.

Era un consumado inventor, famoso por hacer que los motores de vapor que impulsaron la Revolución Industrial fueran más eficientes.

Hutton, fascinado por los artefactos a vapor de Watt, empezó a preguntarse si el calor alimentaba el planeta.

Quizás el centro de la Tierra contenía un poderoso motor térmico.

Los científicos en el siglo XVIII habían visto volcanes activos, pero pensaban que eran fenómenos aislados.

Hutton fue la primera persona en imaginar que el centro de la Tierra era una bola ardiente y que los volcanes eran respiraderos de ese horno gigante de las profundidades.

Dibujo del núcleo de la TierraDerechos de autor de la imagen ISTOCK
Image captionLa intuición y la deducción lo llevaron a imaginar algo que no tenía manera de ver… y estaba en lo correcto.

Ese horno tenía el poder de crear nuevas rocas que nacían fundidas.

Hora de la verdad

Hutton había revelado dos maneras fundamentales de crear tierra.

  1. La roca sedimentaria podía formarse cuando el tiempo – lluvia, heladas y viento – erosionaba el suelo. Los ríos llevaban el sedimento a los océanos y éste se comprimía y formaba una nueva roca.
  2. Un núcleo caliente en el centro de la Tierra creaba roca fundida que se enfriaba.

Además, tenía una visión clara de que la Tierra se destruía y se reparaba en un ciclo sin fin.

Era una teoría grande, coherente e impresionante. Sus amigos lo persuadieron de hacerla pública y en 1785 la presentó en la Academia Real de Edimburgo.

James HuttonDerechos de autor de la imagen GETTY IMAGES
Image captionSu teoría cuestionaba todo lo que se creía saber sobre el planeta.

Hutton era muy mal orador, estaba increíblemente nervioso y lo que iba a decir era realmente polémico: sus ideas iban en contra de toda la ortodoxia religiosa de la época.

Le fue terrible. Los caballeros de la Sociedad Real rechazaron su teoría y fue acusado de ser ateo.

No se meta con el granito

Uno de los mayores problemas fue el granito, lo que suena raro. Pero la creencia dominante era que el granito había sido la primera parte de la Tierra que Dios creó.

Granito en paisaje británicoDerechos de autor de la imagen GETTY IMAGES
Image captionMeterse con el granito en esa época era cosa seria.

Nada podría ser más sólido que la primera piedra del Señor.

Pero Hutton afirmaba que esa cosa dura que parecía tan antigua e inmutable era en realidad un gran ejemplo de una roca joven que alguna vez había sido casi líquida.

Estaba desafiando toda la visión bíblica de la creación. Hace 220 años, eso era herejía.

Hutton necesitaba encontrar evidencias.

A la edad de 60 años, cuando debería haber estado en casa con su pipa y sus zapatillas, se fue a buscarla.

Granito inyectado

Hutton eligió explorar Glen Tilt porque dos de los grandes ríos de Escocia se encuentran aquí.

El río Dee corre sobre un lecho rocoso de granito rosa. El río Tay tiene un lecho rocoso de arenisca gris.

Hutton esperaba que ahí, donde los ríos se encontraban, se encontrarían también el granito y la piedra arenisca.

Y así fue: encontró rocas estratificadas grises con granito rosa inyectado.

Granito con roca gris
Estas son las rocas que encontró: se ve claramente cómo el granito rosado se filtró por las grietas de la roca gris. Para que eso pudiera suceder, el granito debía haber estado casi líquido cuando se encontraron.
detalle de granito en roca gris
Si el granito había estado fundido, debía haber una fuente de calor potente en el centro de la Tierra, dedujo Hutton.

Eso demostraba que el granito había estado fundido cuando se encontró con las rocas grises, lo que a su vez era la prueba de que había un motor de calor gigante en acción.

Además, mostraba que la Tierra no había permanecido sin cambios desde la creación, como decía la Biblia.

Con sus observaciones en Escocia, James Hutton había probado gran parte de su teoría de la Tierra como un sistema.

Pero aún no estaba satisfecho: quería saber si la Tierra tenía miles de años, como decía la Biblia, o era mucho, mucho más antigua.

La edad del planeta

En 1788, Hutton se dirigió al punto de Siccar en la costa de Berwickshire.

Lo que lo intrigaba eran los diferentes ángulos de las rocas a lo largo de los acantilados.

Había visto capas verticales a lo largo de parte de la costa pero sabía que más al norte, el ángulo cambiaba completamente y las capas eran horizontales.

Siccar PointDerechos de autor de la imagen DAVE SOUZA
Image captionLas rocas de Siccar Point están en distintos ángulos. Parte de la razón es el movimiento de las placas tectónicas. Hutton no tenía forma de saber eso, pero ello no impidió que entendiera qué estaba viendo.

La curiosidad de Hutton le hizo mirar más de cerca y entendió que estaba viendo el nacimiento y la muerte de mundos enteros.

En las capas horizontales y verticales de la roca, vio ciclos geológicos apilados unos encima de otros.

Cómic de Graeme McNeeDerechos de autor de la imagen GRAEME MCNEE

No sabía exactamente qué causó esa formación pero su brillante intuición le permitió deducir que involucraba procesos graduales que sucedían no en el tiempo bíblico, sino en el tiempo profundo, extendiéndose inmensamente.

Tenía razón. Hoy sabemos que la roca gris que examinó tiene alrededor de 425 millones de años y la roja, unos 345 millones de años. La brecha entre los dos es de 80 millones de años.

Y ese es el legado más importante de Hutton: la apreciación del tiempo profundo, el cronograma de un planeta.

Cómic de Graeme McNeeDerechos de autor de la imagen GRAEME MCNEE

Su frase fue: “No hay vestigio de un principio, ni perspectiva de un fin“.

En otras palabras, una intemporalidad en la que pequeños cambios graduales pueden lograr casi cualquier cosa.

Su reconocimiento del tiempo profundo fue un avance extraordinario, tan significativo como la teoría de la evolución de Darwin o la teoría de la relatividad de Einstein.

James Hutton vio lo que nadie más había visto antes. Fue el primero en captar la verdadera y vasta edad de la Tierra.

Fue ese descubrimiento más que ningún otro lo que permitió reconstruir la compleja historia de la vida de nuestro planeta.

línea

El cómic sobre el tiempo profundo aparece en este artículo por cortesía de su autor Graeme McNee, (graememcnee.com) y del Festival Internacional de Edimburgo (eif.co.uk). El texto está basado en la serie de la BBC “The men of rock

 

Descubren las huellas más antiguas de vida sobre tierra firme

Han encontrado fósiles de microorganismos que vivieron hace 3.480 millones de años en aguas termales. Solo se conocen seres vivos más antiguos entre los que vivieron en océanos.

  • Crestas en el cratón de Pilbara, al oeste de Australia, donde se han encontrado los restos
Crestas en el cratón de Pilbara, al oeste de Australia, donde se han encontrado los restos – Kathleen Campbell

Parece que una carambola milagrosa permitió que hace unos 4.000 millones de años la vida apareciera en la Tierra, cuando el Sistema Solar estaba recién nacido y apenas tenía 500 millones de años. Las condiciones químicas y físicas del planeta eran las adecuadas, y la vida se apañó para sobrevivir al Gran Bombardeo de asteroides que asoló la superficie. Parece también que otros lugares del Sistema Solar, como Marte, no fueron tan afortunados y que el agua se evaporó, pero en nuestro planeta azul la semilla de la vida germinó.

Desde entonces, el Sol ha vivido casi la mitad de su vida, y continentes enteros de la Tierra se han movido y hasta han desaparecido de la superficie. Aún así, los científicos saben que en algunos lugares muy concretos hay rocas excepcionalmente antiguas, que esconden en su interior los secretos de formas de vida que vivieron hace miles de millones de años. En un estudio publicado recientemente en la revista Nature Communications, los investigadores han informado del hallazgo de las huellas dejadas por una forma de vida primitiva que vivió hace 3.480 millones de años, y que se ha convertido en el ser vivo terrestre más antiguo descubierto nunca. Solo le superan en edad fósiles de formas de vida que vivieron en los océanos primitivos.

«Nuestro descubrimiento no solo aumenta la antigüedad de la vida de las aguas termales (“hot springs” en inglés), además indica que la vida estaba presente sobre la superficie terrestre mucho antes de lo que se pensaba, en concreto unos 580 millones de años antes», ha dicho Tara Djokic, estudiante de doctorado en la Universidad de Nueva Gales del Sur (Australia) y primera autora del estudio. De hecho, hasta ahora los restos más antiguos de vida en tierra firme eran los que están en Sudáfrica y tienen entre 2.700 y 2.900 millones de años.

La investigadora Tara Djokic en el cratón de Pilbara
La investigadora Tara Djokic en el cratón de Pilbara– Dale Anderson

La importancia de esto radica en que la hipótesis más aceptada sobre el origen de la vida en la Tierra plantea que los primeros microorganismos se desarrollaron o aparecieron en los océanos, en concreto junto a chimeneas hidrotermales. Pero al encontrar formas de vida tan antiguas sobre tierra firme, gana peso la idea de que quizás fuera allí donde ocurriera antes, en opinión de Djokic. Eso o que aparecieran simultáneamente en ambos lugares.

Los investigadores examinaron depósitos muy antiguos, de cerca de 3.500 millones de años de edad, situados en la Formación Dresser, en pleno cratón de Pilbara, uno de los lugares del mundo donde se pueden encontrar las rocas más antiguas. La región se encuentra al noroeste de Australia, y junto al cratón de Kaapvaal, permite obtener muestras de rocas que pertenecen al eón Arcaico, con una antigüedad de hasta 3.600 millones de años.

Cratón de Pilbara (coloreado en rojo), al noroeste de Australia
Cratón de Pilbara (coloreado en rojo), al noroeste de Australia– HESPERIAN/WIKIPEDIA

Hasta ahora, se pensaba que esos depósitos se habían formado bajo el agua del océano. Pero al analizar la acumulación de un mineral vinculado con la actividad hidrotermal en la superficie terrestre, la geiserita, los autores concluyeron que estos depósitos estaban emergidos hace 3.500 millones de años y que formaban parte de una formación de aguas termales.

Aparte de esto, los autores encontraron unas burbujas y texturas en empalizada, formadas por micoorganismos, en el interior de las rocas de este depósito. Estas huellas se encontraron dentro de unos estromatolitos, unas estructuras fósiles que se asemejan a rocas compuestas por la acumulación de múltiples capas al estilo de una cebolla. Estas rocas se forman gracias al crecimiento de comunidades de microorganismos, que van creciendo hacia arriba y apilándose unos sobre otros, y a causa de un proceso de fosilización.

Burbujas acumuladas en los depósitos del cratón de Pilbara. Evidencia más antigua de vida primitiva en tierra firme
Burbujas acumuladas en los depósitos del cratón de Pilbara. Evidencia más antigua de vida primitiva en tierra firme– UNSW

«Esto muestra que una diversa variedad de vida existió ligada al agua dulce, en tierra, muy al comienzo de la historia de la Tierra», ha dicho Martin Van Kranendonk, coautor del estudio y también investigador en la Universidad de Nueva Gales del Sur.

En opinión de Ricardo Amils, catedrático de microbiología de la Universidad Autónoma de Madrid, este trabajo «contribuye a romper el dogma sobre el origen de la vida en los océanos». Sin embargo, ha recordado que hay otras opciones sobre el origen de la vida, relacionadas con la aparición de la vida en el subsuelo de la Tierra, «asociada a minerales, protegida de impactos meteoríticos y radiación ultravioleta y que posteriormente colonizó otros ambientes».

De la Tierra a Marte

Las repercusiones de este trabajo no solo se quedan en la Tierra. Los autores también han explicado que este descubrimiento tiene implicaciones para la búsqueda de vida más allá de la Tierra. Si la vida estaba presente en aguas termales hace 3.480 millones de años en la Tierra, ¿podía estar presente en Marte en el mismo momento, antes de que el planeta rojo perdiera su atmósfera y el agua líquida de su superficie?

«Los depósitos de Pilbara tienen la misma edad que gran parte de la corteza de Marte, lo que convierte a las regiones donde hubo aguas termales en el planeta rojo en un objetivo muy interesante en nuestra misión de buscar vida allí», ha explicado Kranendonk. De hecho, la misión Mars2020 de la NASA tiene entre sus próximos puntos de aterrizaje posibles los montes Columbia, una zona en la que se cree que pudo haber aguas termales en el pasado.

TORRE DEL DIABLO

 (Devils Tower, Wyoming. EUA.) Esta geoforma mesetiforme es emblemática del estado de Wyoming y hace más de 100 años fue declarada Monumento Nacional. En ella se filmó una parte esencial de la película “Encuentros Cercanos del Tercer Tipo.” Tiene más de 260 metros de altura desde su base y es un “cuello volcánico” (también llamado “pitón”, o “neck”, en inglés.) Está formado por rocas originadas en un magma que no alcanzó a salir a la superficie y se enfrió dentro del conducto o chimenea volcánica. En esas condiciones, el magma protegido por la aislación térmica que generó la “roca de caja” (roca en la cual existió la fisura que ofició de conducto volcánico), pudo enfriar tan lentamente como para que la pérdida de volumen por enfriamiento ( = contracción térmica) se resolviese en un sistema de fracturas poligonales. Esas fracturas dividen el conjunto de la roca en una serie de columnas muy regulares, extremadamente largas con relación al diámetro de cada columna. Las columnas más frecuentes son de rocas básicas como los basaltos, aunque en este caso particular están formadas por una roca denominada fonolita porfirica, cuya antigüedad es del Cenozoico temprano (Paleoceno.) Luego del enfriamiento del magma, posteriores procesos erosivos eliminaron la “roca de caja”, quedando como remanente este relleno del conducto volcánico.

La misteriosa bacteria que apareció tras la erupción del volcán de El Hierro

 Un filamento de ‘Thiolava veneris’ obtenido de un sustrato de lava sólida. ROBERTO DANOVARO.

Grandes extensiones de roca se hallan recubiertas de un extraño tapiz blanco en el volcán submarino

El hallazgo ofrece una oportunidad única para estudiar la repoblación de hábitats tras eventos catastróficos

La erupción volcánica submarina que estalló frente a la isla del Hierro en 2011 acabó con la mayor parte de la vida natural a su alrededor. La liberación de grandes cantidades de lava y gases tóxicos convirtió el área en inhabitable. Sin embargo, dos años después, los científicos descubrieron que el lecho marino alrededor del volcán estaba cubierto de un extraño tapiz de pelo blanco que se extendían a lo largo de varios kilómetros.

Los investigadores se encontraban ante una nueva especie de bacteria que había colonizado el volcán Tagoro, a una profundidad de 130 metros. El aspecto de esta formación de pelo blanco en el agua llevó a sus descubridores a bautizarla como cabello de Venus, aludiendo a la diosa romana nacida en el mar y esposa de Vulcano. El hallazgo, que aparece descrito en un artículo publicado el pasado mes en la revista Nature Ecology & Evolution, ofrece una oportunidad única para comprender las claves sobre la aparición de la vida en nuevos hábitats creados tras eventos catastróficos.

Las erupciones volcánicas proporcionan a los científicos la ocasión de observar cómo sistemas complejos pueden aparecer en ambientes inhóspitos. El caso del volcán canario es especialmente llamativo, ya que se encuentra relativamente cerca de la costa y a poca profundidad, facilitando su observación. “Las investigaciones posteriores podrán abordar cuestiones más amplias sobre dónde y cómo se forman las células aprovechando la energía geotérmica”, señala el microbiólogo de la Universidad de Delaware David Kirchman.

En las erupciones volcánicas en tierra firme, los primeros organismos en colonizar son los líquenes, una función que el cabello de Venus (cuyo nombre científico es Thiolava veneris) desempeñaría en erupciones submarinas como la del Tagoro. De acuerdo con los científicos, una cadena alimentaria compleja aparece en el hábitat que crean estos microorganismos, lo que supone la constatación de que el cabello de Venus proporciona un impulso a los sistemas biológicos en estos ecosistemas. “Probablemente proporcionan alimento a otros pequeños microorganismos, que luego son consumidos por organismos más grandes, como larvas de invertebrados”, explica Kirchman.

Ambientes inhóspitos

El equipo de investigadores se sirvió de vehículos operados a distancia con herramientas moleculares, geoquímicas y microscópicas para estudiar el volcán. La secuenciación posterior del ADN de la bacteria -completado en un 82%- permitió a los biólogos analizar algunas de sus características. La Thiolava Veneris sobrevive en ambientes ricos en azufre, elemento muy abundante en los momentos posteriores a una erupción volcánica y es capaz de obtener energía de nitrógeno y oxígeno. “La roca volcánica es hostil a nuestra forma de vida”, dice Kirchman, “pero estas bacterias están adaptadas para vivir en este ambiente con altas temperaturas y concentraciones de gases tóxicos”.

Asimismo, posee un gen que le permite sobrevivir entre los metales pesados que suelen aparecer entre las rocas volcánicas recién formadas. Los “cabellos” son en realidad células bacterianas cubiertas de una capa protectora. Los investigadores continúan monitorizando de forma regular la zona y las pruebas indican que la superficie cubierta por la bacteria se ha ampliado hasta cubrir la parte superior del volcán.

Fuente: http://www.elmundo.es/ciencia-y-salud/ciencia/2017/05/10/590a0151e5fdeab27c8b45b8.html

Máximo térmico del Paleoceno-Eoceno

La gráfica muestra la evolución del clima durante los últimos sesenta y cinco millones de años. El máximo térmico del Paleoceno-Eoceno está remarcado en rojo y probablemente se encuentra subestimado en un factor de entre 2 y 4 a causa de una vaga estimación en el muestreo de datos.

El Máximo Térmico del Paleoceno-Eoceno (MTPE, PETM en inglés), llamado también Máximo Térmico del Eoceno Inicial, o Máximo Térmico del Paleoceno Superior,1 fue un brusco cambio climático que marcó el fin del Paleoceno y el inicio del Eoceno, hace 55,8 millones de años. Se trata de uno de los períodos de cambio climático más significativos de la era Cenozoica, que alteró repentinamente la circulación oceánica y atmosférica, provocando la extinción de multitud de géneros de foraminíferos bentónicos, y causando grandes cambios en los mamíferos terrestres que marcaron la aparición de los linajes actuales.

En apenas 20 000 años, la temperatura media terrestre aumentó en 6 °C, con un correspondiente aumento del nivel del mar, así como un calentamiento de los océanos.2 A pesar de que el calentamiento pudo desencadenarse por multitud de causas, se cree que las principales fueron la fuerte actividad volcánica y la emisión de gas metano que se encontraba almacenado en los clatratos de los sedimentos oceánicos, y que pudieron intensificar el calentamiento al liberar a la atmósfera grandes cantidades de carbono empobrecido en el isótopo carbono-13. Además, las concentraciones atmosféricas de CO2 aumentaron de forma significativa, perturbando su ciclo y causando la elevación de la lisoclina, y una escasez de oxígeno en las profundidades oceánicas que, a la postre, provocó la mayoría de las extinciones marinas.

Escenario[editar]

Nombre[editar]

En un primer momento, y a falta de dataciones precisas, el MTPE se ubicó a finales del Paleoceno,3 denominándose Máximo Térmico del Paleoceno Superior (LPTM en inglés).1 4 5 6 Sin embargo, posteriormente, el nombre que adoptaron la mayoría de los textos fue el de Máximo Térmico del Paleoceno-Eoceno, ya que el límite entre ambas épocas fue definido oficialmente coincidiendo con el instante de mayor aumento de carbono-12, siendo este hecho la causa del suceso climático en cuestión.7 8 No obstante, en otras publicaciones creen más conveniente utilizar el nombre de Máximo Térmico del Eoceno Inicial, ya que las temperaturas máximas absolutas se alcanzan al inicio de este período, con posterioridad a la liberación de carbono-12 a la atmósfera.9 10 11

Escenario temporal[editar]

Teniendo en cuenta las incertidumbres en la datación radiométrica, el máximo térmico del Paleoceno-Eoceno tuvo lugar entre 55,8 y 55,0 millones de años antes de nuestra era.8 12 13 14 15 16 Duró aproximadamente 20 000 años, y vino precedido de un período más amplio de seis millones de años de calentamiento global gradual que se inició a mediados del Paleoceno,17 y llegó a su máxima expresión en el denominado «Óptimo Climático del Eoceno» (varios millones de años después del MTPE). Sin embargo, durante este período, existieron también varios eventos de enfriamiento, como el evento Elmo (en:Eocene Thermal Maximum 2). Durante los primeros 1000 años del MTPE, se estima que fueron liberadas en los océanos y en la atmósfera entre 1500 y 2000 gigatoneladas de carbono (–2 Gt/año), tasa de emisión cuatro veces menor que la emitida en 2005 por la actividad humana (7,8 Gt/año).18

Disposición terrestre[editar]

Durante el Eoceno, la disposición del planeta era significativamente diferente. El istmo de Panamá no ejercía todavía de puente entre América del Norte y América del Sur, permitiendo el tránsito de aguas entre el océano Atlántico y el Pacífico. Por otra parte, el pasaje de Drake se obstruyó, impidiendo el aislamiento térmico de la Antártida. Este hecho, junto con los altos niveles de CO2, indican que no había importantes capas de hielo, por lo que el planeta carecía de hielo, por aquel entonces, casi en su totalidad.17

Evidencias y cronología[editar]

La prueba más sólida para ratificar la existencia del cambio climático es proporcionada por la variación negativa en el registro del carbono-13, el isótopo más común del carbono, con una excursión negativa, súbita y pronunciada de entre –2 ‰ y –3 ‰.13 Esta inyección masiva de carbono empobrecido en carbono-13 implica la liberación de grandes cantidades de carbono-12, como mínimo 6800 gigatoneladas sobre la atmósfera y los océanos durante los 20 000 años que se prolongó.19

La cronología de la disminución relativa de carbono-13 en el MTPE se ha calculado de dos maneras distintas, complementarias entre sí. La más importante de ellas es la ODP Core 690 (realizada en el mar de Weddell), pues el período está casi exclusivamente basado en este registro, aunque inicialmente fue calculado mediante una aproximación tomando en cuenta una tasa constante de sedimentación.20 Más tarde surgió otro modelo distinto, asumiendo que el flujo del helio-3 es constante, pues este isótopo del helio es producido por el Sol constantemente, y no hay razones para creer que se produjeran grandes cambios en las fluctuaciones del viento solar durante aquel breve período.21 Ambos modelos tienen sus carencias, pero coinciden en las cuestiones más importantes. Entre los puntos en los que coinciden, cabe destacar que ambos están de acuerdo en que la liberación del carbono se produjo en dos etapas, cada una con una duración aproximada de 1000 años, separadas por un período de unos 20 000 años. Los modelos divergen, sobre todo, en las estimaciones del tiempo de recuperación, que oscilan entre los 150 000 para el primero,20 y 30 000 años para el segundo modelo.21 Otras teorías sugieren que el calentamiento tuvo lugar 3000 años antes de la liberación del carbono-12, aunque las causas iniciales continúan siendo inciertas.22 Se han realizado estudios en el Pirineo español que confirman el aumento de CO2 durante el MTPE.23

 Gráfico que muestra el registro de temperaturas del fondo oceánico. El máximo térmico del Paleoceno-Eoceno está representado mediante las siglas MTPE.

La temperatura media del planeta aumentó en 6 °C de forma drástica, en un período de apenas 20 000 años. Este cálculo se basa en los valores de magnesio/calcio y en la concentración del isótopo oxígeno-18, que es el recurso más utilizado para calcular temperaturas en el Eoceno, ya que debido al escaso hielo los cálculos ganan en seguridad, al permanecer constante la concentración de oxígeno-18 oceánico.24 Otros análisis, centrados en la composición de la flora, así como de la forma y tamaño de sus hojas, arrojan un resultado similar: aumento de 5 °C, además de revelar que, al inicio del MTPE, las precipitaciones fueron escasas pero que, con el tiempo, fueron aumentando progresivamente.25 Debido al ascenso de las temperaturas, los escasos hielos comenzaron a derretirse, provocando la reducción del albedo, lo que a su vez produjo un ascenso de las temperaturas en un proceso de retroalimentación positiva. Esto causó que el incremento de temperatura fuera mayor en los polos, alcanzando temperaturas medias anuales de entre 10 y 20 °C.26 El calentamiento del agua de la superficie del océano Ártico fue tal, que llegó a albergar formas de vida propias de los trópicos, como los dinoflagelados, alcanzando temperaturas mayores a 22 °C.27

No sólo aumentó la temperatura, sino que también lo hizo la humedad, debido al incremento de la tasa de evaporación, más acusada en los trópicos. Un isótopo del hidrógeno, el deuterio (2H), revela que esta humedad fue transportada hacia los polos, explicando así las intensas lluvias que tuvieron lugar en el océano Ártico.28

Océanos[editar]

Debido al escaso hielo, el nivel del mar ascendió significativamente debido al incremento de la temperatura. Prueba de ello es el desplazamiento de los palinomorfos (partículas del tamaño de un grano de polen) del océano Ártico, que reflejan una disminución de la materia orgánica terrestre en comparación con la materia orgánica marina.27

A comienzos del MTPE, el patrón de la circulación oceánica cambió radicalmente en un período inferior a 5000 años. La dirección de la circulación se revirtió, causando por ejemplo que en el océano Atlántico la corriente del fondo fluyera desde el norte hacia el sur, cuando siempre había ocurrido a la inversa. Estos efectos perduraron, al menos, durante 40 000 años. Este cambio en el flujo de agua caliente a las profundidades oceánicas agravó el calentamiento. La composición química de los océanos también se vio alterada enormemente.29

En varias partes de la mayoría de los océanos, especialmente en el norte del océano Atlántico, la bioturbación (la reexposición de material, generalmente tóxico, que se encuentra almacenado bajo los sedimentos) resultaba casi inexistente. Esto podría deberse al cambio de la circulación oceánica, que causó que el fondo oceánico aumentase su temperatura, y con ello que apenas albergara oxígeno (anoxia). Sin embargo, en algunos lugares de los océanos la bioturbación no cesó.30

Otro efecto del MTPE sobre el medio oceánico fue la elevación del límite de la lisoclina.31 La lisoclina indica la profundidad a la cual se disuelve espontáneamente el carbonato en los océanos. Hoy en día, dicho límite se encuentra a 4 km por debajo de la superficie oceánica, cifra muy similar a la media de profundidad de los océanos. Esta profundidad depende, entre otros factores, de la temperatura y de la cantidad de CO2 disuelto, por lo que ambos factores elevaron la lisoclina cada vez más hacia la superficie oceánica, provocando la disolución de los carbonatos de las aguas profundas.32 Esta acidificación de las aguas profundas se puede observar en los estratos del suelo oceánico (si la bioturbación no ha sido especialmente activa, ya que en ese caso las pruebas se destruirían), pues muestra un cambio bastante acusado, pasando desde carbonatos con un color grisáceo, a carbonatos rojizos y arcillosos, para después volver de nuevo a los grisáceos.33 Estas evidencias se muestran mucho más claras en el norte del océano Atlántico que en cualquier otro, de lo que se deduce que la acidificación fue mucho más acusada allí. En algunas zonas del sureste del Atlántico, la lisoclina llegó a elevarse 2 km en tan sólo unos miles de años.30

Flora y fauna[editar]

Vista al microscopio del foraminífero bentónico Ammonia tepida. Este grupo de organismos fue perjudicado durante el máximo térmico del Paleoceno-Eoceno.

El MTPE produjo la extinción del 35-50 % de los foraminíferos bentónicos en un lapso de 1000 años, porcentaje más elevado que en la extinción masiva del Cretácico-Terciario acontecida unos 10 millones de años antes. En contraposición, los foraminíferos planctónicos se diversificaron, y los dinoflagelados y mamíferos prosperaron. También cabe destacar el auge de las bacterias.22

Es difícil dar una explicación de las extinciones de los organismos del fondo marino, ya que muchas de ellas fueron solamente regionales, afectando principalmente a aquellos distribuidos al norte del océano Atlántico. Esto significa que, al contrario que la temperatura, no se pueden formular hipótesis generales de la reducción del oxígeno, o de la corrosividad del carbono debido a los carbonatos insaturados de las profundidades oceánicas. El único factor global es el aumento de la temperatura, y parece que toda la culpa recae sobre este elemento. Las extinciones regionales del Atlántico norte son atribuidas, en general, al alto nivel de anoxia en las profundidades de sus aguas.19 34

El incremento de los niveles de CO2 produjo una acidificación de las aguas superficiales, lo que resultó extremadamente nocivo para los corales.35 Se ha demostrado experimentalmente que también resulta muy perjudicial para el plancton calcáreo.36 Sin embargo, los ácidos usados en el laboratorio para simular el aumento natural de la acidez que resultarían del aumento de las concentraciones de CO2 podrían haber arrojado resultados engañosos. Prueba de ello son los cocolitóforos (al menos Emiliania huxleyi), los cuales se volvieron más abundantes en aguas acidificadas.37 Curiosamente, al nanoplancton calcáreo no se le atribuye ningún cambio en su distribución por la acidificación durante el MTPE, como sí ocurrió con los cocolitóforos.37 La acidificación, en cambio, dio lugar a un importante aumento de algas calcificadas,38 y también, aunque en menor medida, de foraminíferos calcáreos.39

El aumento de los mamíferos es otro aspecto interesante. No se han hallado pruebas de ningún aumento en la tasa de extinción entre los organismos terrestres. Muchos de los principales órdenes de mamíferos, incluyendo los artiodáctilos, los caballos y los primates, surgieron rápidamente y se propagaron por todo el planeta entre 13 000 y 22 000 años después del inicio del MTPE.40 41 Esta diversificación y dispersión de los primates fue un aspecto clave para la evolución humana.

Existen multitud de causas que pudieron provocar o intensificar el MTPE, por lo que resulta complicado averiguar claramente cuáles de ellas tuvieron mayor repercusión. Las temperaturas globales aumentaron a un ritmo constante en todo el planeta, provocando una serie de sucesos agravados por mecanismos de retroalimentación positiva. Para poder determinar estos factores, se ha recurrido al balance de masa del isótopo del carbono, pues el carbono puede variar su ciclo en períodos relativamente cortos. La concentración relativa de carbono-13 descendió entre –2 ‰ y –3 ‰, y analizando las reservas de carbono, se puede considerar qué masa de la reserva sería necesaria para producir el efecto. El único supuesto del que se parte es que la masa de carbono contenida tanto en la atmósfera como en los océanos durante el Paleógeno era la misma que la actual, algo que resulta verdaderamente difícil de confirmar.

Para que se produjera dicha perturbación en la concentración de carbono-13, según esta teoría los volcanes deberían haber expulsado cerca de 1500 gigatoneladas de carbono durante los dos períodos de 1000 años. Para una visión más comprensible de esta cifra: se trata de una tasa 200 veces superior a la del resto del Paleógeno, aunque dicha suma es improbable, pues no se han encontrado indicios de una actividad volcánica de tal magnitud en toda la historia de la Tierra. Sin embargo, cerca de un millón de años antes del MTPE, una importante actividad volcánica comenzó a asolar el este de Groenlandia, aunque por sí sola no puede explicar la rapidez con la que tuvo lugar el calentamiento. Incluso en el caso de que las 1500 gigatoneladas hubiesen sido expulsadas repentinamente de una sola vez, se necesitarían otros factores que hubiesen dado lugar a mecanismos de retroalimentación positiva para producir la alteración que se ha observado en el isótopo del carbono.

Por otra parte, se ha sugerido que los aumentos repentinos de la actividad volcánica estuvieron asociados a la actividad del rift continental oceánico, que expulsó magma caliente sobre los sedimentos ricos en carbono, lo que hubiera desencadenado la liberación del metano.42 Otras fases mucho más tardías de la actividad volcánica habrían causado la expulsión de mayor cantidad de gas metano, provocando otros períodos de calentamiento global durante el Eoceno, como el ETM2 (siglas inglesas de Máximo térmico del Eoceno 2, comúnmente evento Elmo).19

Liberación de gas metano[editar]

Clatratos de metano en plena combustión. En ella se produce agua y dióxido de carbono en abundantes cantidades, siendo con toda probabilidad una de las causas principales del MTPE.

Ninguna de las teorías permite explicar, por sí sola, la excursión del isótopo carbono-13 y el calentamiento que tuvo lugar durante el MTPE. El mecanismo de retroalimentación positiva que pudo amplificar más la perturbación inicial fueron los clatratos, según la llamada hipótesis del fusil de clatratos. El metano, que se acumula de forma continua en los sedimentos de los fondos oceánicos debido a la descomposición orgánica, es estable en el agua a cierta presión y temperatura, formando cúmulos en estado sólido. A medida que la temperatura se incrementa, la presión que se ejerce decae, la configuración deja de ser estable, y los clatratos se disocian, causando la liberación del gas metano a la atmósfera. Dado que los clatratos en sí mismos poseen un –60 ‰ en la concentración de carbono-13 con respecto a la atmósfera, pequeñas cantidades de estos materiales podrían producir grandes variaciones relativas de carbono-13. Además, el metano es un potente gas invernadero, unas ocho veces más eficaz que el dióxido de carbono, por lo que, al ser expulsado hacia la atmósfera, pudo causar un gran calentamiento global que, a su vez, calentara los océanos y diera lugar a más emisiones de metano, desestabilizando el sistema. Se ha calculado que el océano habría tardado unos 2300 años en alcanzar la temperatura que permitiera disociar los clatratos de su fondo, aunque este cálculo está basado en una serie de supuestos.43

Para que esta hipótesis sea válida, los océanos deberían mostrar signos de calentamiento antes de la excursión del isótopo del carbono, pues el metano tarda un tiempo hasta que logra incorporarse a la atmósfera. Hasta hace relativamente poco tiempo, las pruebas mostraban que ambos picos eran simultáneos, restando apoyo a la teoría. Sin embargo, estudios recientes han logrado detectar un breve lapso de tiempo entre el calentamiento inicial y la disminución relativa de carbono-13.44 Algunos paleotermómetros, como el TEX86, también coinciden en que el calentamiento sucedió unos 3000 años antes de la disminución relativa del isótopo del carbono.22 Sin embargo, el agua oceánica más profunda no parece evidenciar este intervalo de tiempo.

Los análisis de estos registros revelan otro hecho interesante: los foraminíferos planctónicos grabaron pequeños cambios en los valores de los isótopos antes que los foraminíferos bentónicos, que habitan en los sedimentos de los océanos. Los caparazones de estos organismos recogen estas variaciones al oxidarse, por lo que una liberación gradual de gas metano en el fondo oceánico tendría que haber oxidado primero los caparazones de los foraminíferos bentónicos. El hecho de que los foraminíferos planctónicos fueran los primeros en mostrar estos signos de oxidación se debe a que el metano fue liberado tan rápidamente que su oxidación agotó todo el oxígeno del fondo oceánico, permitiendo que, después de esto, el metano alcanzase la atmósfera sin oxidarse, donde reaccionaría con el oxígeno atmosférico. De este análisis se deduce que el proceso de liberación del metano duró aproximadamente 10 000 años.44

Impacto de cometa[editar]

Las variaciones orbitales muestran la relación entre la excentricidad orbital (azul) y las temperaturas (negro). Una teoría propone esta relación como una de las causantes del MTPE.

Otra teoría afirma que un cometa rico en carbono-12 impactó sobre la superficie terrestre e inició el calentamiento global.45 Incluso suponiendo que el tamaño del cometa se encontrara en el límite para que la catástrofe no dejara huella sobre el planeta (según la teoría unos 10 km), y que después del suceso se produjeran procesos de retroalimentación, todavía serían necesarias 100 gigatoneladas de carbono extra que tendrían que provenir de actividades terrestres. Sin embargo, esta teoría todavía posee algunas cuestiones sin resolver y no explica al detalle todo lo acontecido. Según la teoría, el cometa habría causado la formación de una capa arcillosa de 9 metros de espesor tremendamente magnetizada, pero otras fuentes creen que esta capa se formó a un ritmo demasiado lento como para que fuera consecuencia del impacto, atribuyendo su creación a las bacterias, que prosperaron durante el calentamiento.22 Por otra parte, la anomalía del iridio (indicador fiable de impactos sobre el planeta) que se ha observado en España es demasiado reducida como para confirmar el impacto del cometa.46

Ciclos orbitales[editar]

Debido a la existencia de otros cambios climáticos de escala global, como el ETM2 (evento Elmo), se ha formulado la hipótesis de que estos cambios se repiten de forma regular, y que son consecuencia de las variaciones orbitales en la excentricidad de la órbita terrestre. La proximidad al Sol hizo que la radiación solar aumentase, y con ello la temperatura, traspasando así el umbral para dar rienda suelta a los diversos procesos de retroalimentación positiva.15

Quema de turba[editar]

Se llegó a postular una teoría que afirmaba que el MTPE fue provocado por la combustión de grandes cantidades de turba, un material orgánico rico en carbono. Sin embargo, para producir la disminución relativa de carbono-13 que tuvo lugar, sería necesario que se quemara el 90 % de la biomasa terrestre de aquel entonces. Dado que durante el MTPE las plantas crecieron desenfrenadamente, esta teoría ha quedado refutada.47

Período de recuperación[editar]

El registro del isótopo carbono-13 muestra un tiempo de recuperación de entre 30 00021 y 150 000 años,20 un período relativamente corto si lo comparamos con la permanencia del carbono en la atmósfera actual (entre 100 000 y 200 000 años). Cualquier explicación satisfactoria de este rápido tiempo de recuperación debe incluir un efectivo mecanismo de retroalimentación.48

El modo más probable de recuperación vendría dado por un incremento en la productividad biológica, transportando rápidamente el carbono hacia el fondo oceánico. Esto contaría con la ayuda de las altas temperaturas globales y con los altos niveles de CO2, así como con un incremento de los suministros de nutrientes (las altas temperaturas y las elevadas precipitaciones causarían una gran erosión continental, y la actividad volcánica pudo haber proporcionado más nutrientes). Una prueba del aumento de la productividad biológica podría ser el bario,48 sin embargo, el aumento de este elemento podría también deberse a la liberación del bario disuelto junto con el metano del fondo oceánico.49 Además, la diversificación evidencia que la productividad aumentó sobre todo en las zonas costeras, donde la flora marina permaneció caliente y fértil, contrarrestando la reducción de la productividad en los fondos oceánicos.39

Véase también[editar]

Referencias[editar]

  1. Saltar a:a b Katz, M. (1999). «The Source and Fate of Massive Carbon Input During the Late Paleocene Thermal Maximum». Science 286 (Noviembre). pp. 1531-1533.
  2. Volver arriba Kennett, J. P.; Stott, L. D. (1991). «Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene». Nature 353. pp. 225-229.
  3. Volver arriba Berggren, W. A.; Kent, D. V.; Swisher, C. C.; Aubry, M. P. (1995). Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology). ISBN 1-56576-024-7.
  4. Volver arriba Zachos, J. C.; Lohmann, K. C; Walker, J. C. G.; Wise, S. W. (1993). «Abrupt climate change and transient climates during the Palaeogene: A marine perspective». Journal of Geology 101. pp. 191-213.
  5. Volver arriba Knox, R. W. O. B. (1996). Correlation of the Early Paleogene in Northwest Europe. Geological Society Publishing House. ISBN 1-897799-47-0.
  6. Volver arriba Aubry, M. P. (1998). Late Paleocene – Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York.
  7. Volver arriba Aubry, M. P.; Ouda, K. (2003). «The Upper Paleocene-Lower Eocene of the Upper Nile Valley, Part 1, Stratigraphy». Micropaleontology 49. pp. iii-iv.
  8. Saltar a:a b Gradstein, F. M.; Ogg, J. G.; Smith, A. G. (2004). A Geologic Time Scale 2004. Cambridge University Press, Cambridge. ISBN 0-521-78142-6.
  9. Volver arriba Wing, S. L.; Harrington, G. J.; Bowen, G. J.; Koch, P. L. (2003). «Floral change during the Initial Eocene Thermal Maximum in the Powder River Basin, Wyoming». Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369. pp. 425-440.
  10. Volver arriba Zachos, James C.; Michael W. Wara; Steven Bohaty; Margaret L. Delaney; Maria Rose Petrizzo; Amanda Brill; Timothy J. Bralower; Isabella Premoli-Silva (2003). «A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum». Science 302 (5650). pp. 1551-1554.
  11. Volver arriba Bowen, Gabriel J.; David J. Beerling; Paul L. Koch; James C. Zachos; Thomas Quattlebaum1 (2004). «A humid climate state during the Palaeocene/Eocene thermal maximum». Nature 432 (7016). pp. 495-499.
  12. Volver arriba Berggren, W. A.; Kent, D. V.; Obradovich, J. D.; Swisher, C. C. (1992). «Towards a revised Paleogene geochronology». Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton. ISBN 978-0-691-02542-1.
  13. Saltar a:a b Norris, R. D.; Röhl, U. (1999). «Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition». Nature 401 (6755). pp. 775-778.
  14. Volver arriba Röhl, U.; Norris, R. D.; Ogg, J. G. (2003). «Cyclostratigraphy of upper Paleocene and lower Eocene sediments at Blake Nose Site 1051 (western North Atlantic)». Special Paper 369: Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America. pp. 567-588.
  15. Saltar a:a b Lourens, Lucas J.; Appy Sluijs; Dick Kroon; James C. Zachos; Ellen Thomas; Ursula Röhl; Julie Bowles; Isabella Raffi (2005). «Astronomical pacing of late Palaeocene to early Eocene global warming events». Nature 435. pp. 1083-1087.
  16. Volver arriba Westerhold, T.; Röhl, U.; Laskar, J.; Raffi, I.; Bowles, J.; Lourens, L. J.; Zachos, J. C. (2007). «On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect». Paleoceanography 22 (PA2201).
  17. Saltar a:a b Zachos, J. C. (2008). «An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics». Nature 451 (7176). pp. 279-283.
  18. Volver arriba Intergovernmental Panel on Climate Change (2007). «Changes in Atmospheric Constituents and in Radiative Forcing». Climate Change 2007: The Physical Science Basis (pdf) (en inglés). pp. 138 (Figure 2.3b). ISBN 978-05-21705-96-7. Consultado el 19 de septiembre de 2009.
  19. Saltar a:a b c Panchuk, K.; Ridgwell, A.; Kump, L. R. (2008). «Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison». Geology 36 (4). pp. 315-318.
  20. Saltar a:a b c Rohl, U.; Bralower, T. J.; Norris, R. D.; Wefer, G. (2000). «New chronology for the late Paleocene thermal maximum and its environmental implications». Geology 28 (10). pp. 927-930.
  21. Saltar a:a b c Farley, K. A.; Eltgroth, S. F. (2003). «An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He». Earth and Planetary Science Letters 208 (3-4). pp. 135-148.
  22. Saltar a:a b c d Sluijs, A.; Brinkhuis, H.; Schouten, S.; Bohaty, S. M.; John, C. M.; Zachos, J. C.; Reichart, G. J.; Sinninghe Damste, J. S.; Crouch, E. M.; Dickens, G. R. (2007). «Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary.». Nature 450 (7173). pp. 1218-1221.
  23. Volver arriba Schmitz, Birger; Victoriano Pujalte (2007). «Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary». Geology 35 (3). pp. 215-218.
  24. Volver arriba Thomas, E.; Shackleton, N. J. (1996). «The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies». Geological Society London Special Publications 101 (1). pp. 401-441.
  25. Volver arriba Wing, Scott L.; Guy J. Harrington; Francesca A. Smith; Jonathan I. Bloch; Douglas M. Boyer; Katherine H. Freeman (2005). «Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary». Science 310 (5750). pp. 993-996.
  26. Volver arriba Shellito, C. J.; Sloan, L. C.; Huber, M. (2003). «Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene». Palaeogeography, Palaeoclimatology, Palaeoecology 193 (1). pp. 113-123.
  27. Saltar a:a b Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damsté, J. S. S.; Dickens, G. R.; Huber, M.; Reichart, G. J.; Stein, R.; Otros (2006). «Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum». Nature 441 (7093). pp. 610-613.
  28. Volver arriba Pagani, M.; Pedentchouk, N.; Huber, M.; Sluijs, A.; Schouten, S.; Brinkhuis, H.; Sinninghe Damsté, J. S.; Dickens, G. R.; Otros (2006). «Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum». Nature 442 (7103). pp. 671-675.
  29. Volver arriba Nunes, F.; Norris, R. D. (2006). «Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period». Nature 439 (7072). pp. 60-63.
  30. Saltar a:a b Zachos, J. C.; Kump, L. R. (2005). «Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene». Geology 47 (1). pp. 51-66.
  31. Volver arriba Arenillas, I. y Molina, E. (2000). «Reconstrucción paleoambiental con foraminíferos planctónicos y cronoestratigrafía del tránsito Paleoceno-Eoceno de Zumaya (Guipúzcoa)». Revista Española de Micropaleontología 32 (3): 283-300. ISSN 0556-655X. Consultado el 21 de septiembre de 2009.
  32. Volver arriba Dickens, G. R.; Castillo, M. M.; Walker, J. C. G. (1997). «A blast of gas in the latest Paleocene; simulating first-order effects of massive dissociation of oceanic methane hydrate». Geology 25 (3). pp. 259-262.
  33. Volver arriba Zachos, J. C.; Röhl, U.; Schellenberg, S. A.; Sluijs, A.; Hodell, D. A.; Kelly, D. C.; Thomas, E.; Nicolo, M.; Raffi, I.; Lourens, L. J.; Otros (2005). «Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum». Science 308 (5728). pp. 1611-1615.
  34. Volver arriba Zachos, J. C.; Dickens, G. R. (1999). «An assessment of the biogeochemical feedback response to the climatic and chemical perturbations of the LPTM». Geologiska Föreningens i Stockholm Förhandlingar 122. pp. 188-189.
  35. Volver arriba Langdon, C.; Takahashi, T.; Sweeney, C.; Chipman, D.; Goddard, J.; Marubini, F.; Aceves, H.; Barnett, H.; Atkinson, M. J. (2000). «Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef». Global Biogeochemical Cycles 14 (2). pp. 639-654.
  36. Volver arriba Riebesell, U.; Zondervan, I.; Rost, B.; Tortell, P. D.; Zeebe, R. E.; Morel, F. M. M. (2000). «Reduced calcification of marine plankton in response to increased atmospheric CO2». Nature 407 (6802). pp. 364-367.
  37. Saltar a:a b Iglesias-Rodriguez, M. Debora; Paul R. Halloran; Rosalind E. M. Rickaby; Ian R. Hall; Elena Colmenero-Hidalgo; John R. Gittins; Darryl R. H. Green; Toby Tyrrell; Samantha J. Gibbs; Peter von Dassow; Eric Rehm; E. Virginia Armbrust; Karin P. Boessenkool (2008). «Phytoplankton Calcification in a High-CO2 World». Science 320 (5874). pp. 336-340.
  38. Volver arriba Bralower, T. J. (2002). «Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea». Paleoceanography 17 (2). p. 1023. Archivado desde el original el 26 de noviembre de 2015.
  39. Saltar a:a b Kelly, D. C.; Bralower, T. J.; Zachos, J. C. (1998). «Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera». Palaeogeography, Palaeoclimatology, Palaeoecology141 (1). pp. 139-161.
  40. Volver arriba Gingerich, P. D. (2003). «Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming». Causes and Consequences of Globally Warm Climates in the Early Paleogene 369. p. 463.
  41. Volver arriba Vieites, David R.; Mi-Sook Min; David B. Wake (2007). «Rapid diversification and dispersal during periods of global warming by plethodontid salamanders». Proceedings of the National Academy of Sciences of the United States of America 104 (50). pp. 19903-19907.
  42. Volver arriba Storey, M.; Duncan, R. A.; Swisher III, C. C. (2007). «Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic». Science 316 (5824). p. 587.
  43. Volver arriba Katz, M. E.; Cramer, B. S.; Mountain, G. S.; Katz, S.; Miller, K. G. (2001). «Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release». Paleoceanography 16 (6). p. 667.
  44. Saltar a:a b Thomas, D. J.; Zachos, J. C.; Bralower, T. J.; Thomas, E.; Bohaty, S. (2002). «Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum». Geology 30 (12). pp. 1067-1070.
  45. Volver arriba Kent, D. V.; Cramer, B. S.; Lanci, L.; Wang, D.; Wright, J. D.; Van Der Voo, R. (2003). «A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion». Earth and Planetary Science Letters 211 (1-2). pp. 13-26.
  46. Volver arriba Schmitz, B. et al. (2004). «Basaltic explosive volcanism, but no comet impact, at the Paleocene Eocene boundary: high-resolution chemical and isotopic records from Egypt, Spain and Denmark». Earth and Planetary Science Letters 225 (1-2): 1-17. doi:10.1016/j.epsl.2004.06.017.
  47. Volver arriba Moore, Eric A.; Kurtz, Andrew C. (2008). «Black carbon in Paleocene–Eocene boundary sediments: A test of biomass combustion as the PETM trigger». Palaeogeography, Palaeoclimatology, Palaeoecology 267 (1-2). doi:10.1016/j.palaeo.2008.06.010. pp. 147-152.
  48. Saltar a:a b Bains, S.; Norris, R. D.; Corfield, R. M.; Faul, K. L. (2000). «Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback». Nature 407 (6801). pp. 171-174. Archivado desde el original el 26 de noviembre de 2015.
  49. Volver arriba Dickens G. R., Fewless T., Thomas E., Bralower T. J. (2003). «Excess barite accumulation during the Paleocene-Eocene thermal Maximum: Massive input of dissolved barium from seafloor gas hydrate reservoirs». The Geological Society of America 369 (0). pp. 11-23.

Enlaces externos[editar]

En español[editar]

En inglés[editar]

La Formación Jaizkibel y sus singulares geoformas “de Möbius”

El monte Jaizkibel se alza sobre las ciudades de Fuenterrabía, Irún, Pasajes, Rentería y Lezo (Guipúzcoa, País Vasco). Posee unos afloramientos rocosos –áreas en las que el terreno está formado por capas de rocas sin vegetación– en su parte más oriental, zona conocida como Formación Jaizkibel (edad Eoceno).

En la serie de artículos [1] a [3], el equipo de Carlos Galán del Laboratorio de Bioespeleología de la Sociedad de Ciencias Aranzadi estudia ciertas geoformas situadas sobre un conjunto de escarpes de arenisca en la Formación Jaizkibel. Esas geoformas incluyen –según se enumera en [3]– boxworks, cintas perforadas, bandas de Moebius, formas residuales de disolución, estructuras de corriente, nódulos, láminas e inclusiones ferruginosas, figuras de intercepción y anillos de Liesegang.

Aunque mis conocimientos de geología son nulos, cuando un compañero geólogo me comentó la inclusión de bandas de Moebius en la descripción de la Formación Jaizkibel, me animé a buscar estas superficies en los artículos de Carlos Galán y su equipo.

En [2], los autores describen las geoformas que denominan ‘bandas de Moebius’ del siguiente modo:

La formación de patrones en forma de cintas o bandas adquiere su más extravagante expresión en las geoformas que hemos denominado informalmente “bandas de Moebius”. Estas se encuentran en paredes de abrigos y cuevas en avanzado estado de arenización. Forman bandas delgadas que destacan de la roca en relieve positivo con un perfil en T: el trazo superior de la T forma una banda separada paralela a la superficie de la pared y el trazo vertical sirve de unión entre la banda y la pared de roca. La banda en sí está perforada por alveolos, sobre todo en sus bordes externos, que resultan recortados por muescas. Las bandas de este tipo pueden tener desarrollos sinuosos, de varios metros, siguiendo la curvatura de las paredes de las cavidades, por lo que en ocasiones recuerdan el desarrollo sin fin de la figura matemática llamada banda de Moebius. Aunque predominan las bandas verticales o que siguen la línea de mayor pendiente, las hay oblicuas y entrelazadas.

Tras la descripción de estas geoformas, los autores incluyen un párrafo en el que citan algunas características de la banda de Möbius: es una superficie no orientable, sólo posee una cara, tiene un único borde y es una superficie reglada. Explican también como puede construirse pegando dos lados opuestos de una cinta de papel tras un giro de 180 grados; incluso comentan qué sucede si se corta una banda de Möbius longitudinalmente:

Si se corta una cinta de Moebius a lo largo, a diferencia de una cinta normal, no se obtienen dos bandas, sino una banda más larga pero con dos vueltas. Si a ésta banda se la vuelve a cortar a lo largo, se obtienen otras dos bandas entrelazadas pero con vueltas. A medida que se va cortando a lo largo de cada una, se siguen obteniendo más bandas entrelazadas.

Recordemos que la anterior propiedad es solo cierta si se corta la banda de Möbius longitudinalmente por la altura mitad. En la anterior descripción, esa banda más larga obtenida con dos vueltas es (homeomorfa a) un cilindro –lo que llaman una “cinta normal”–, por ello, al volver a cortarlo por la mitad longitudinalmente, se obtienen dos cilindros, pero enlazados. Al repetir la operación se van duplicando los cilindros, que se entrelazan por parejas y entre ellos.

En este párrafo, los autores también comentan que la banda de Möbius ha servido de inspiración en el mundo del arte, nombrando la película argentina Moebiusbasada en el cuento Un metropolitano llamado Moebiusdel astrónomo y escritor Armin Joseph Deutsch.

La descripción de esta serie de propiedades de la banda de Möbius, es un modo de justificar la elección del nombre de estas geoformas, al finalizar esta parte del artículo con esta afirmación:

Aspectos y caracteres paradójicos análogos los presentan las geoformas halladas en Jaizkibel

La metáfora de la banda de Möbius –aunque estas formaciones no lo sean en realidad– es una deliciosa manera de hablar de estas geoformas que, sin lugar a dudas, son bellas, singulares y sorprendentes… como una banda de Möbius.

Más información

[1] Carlos Galán y Marian Nieto, Bandas de Moebius, Boxworks y otras raras Geoformas en arenisca de la Formación Jaizkibel, Sociedad de Ciencias Aranzadi, 2010

[2] Carlos Galán y Marian Nieto, Bandas de Moebius, Boxworks y otras raras Geoformas en arenisca de la Formación Jaizkibel, Boletín Sedeck (Sociedad Española de Espeleología y Ciencias del Karst) 8, 20-41, 2012

[3] Carlos Galán, José Manuel Rivas, Robert Ionescu y Marian Nieto, Disolución intergranular y evolución de cuevas y geoformas: los ejemplos más extravagantes del mundo en erenisca de edad eoceno (Formación Jaizkibel, País Vasco), Sociedad de Ciencias Aranzadi, 2013

[4] Marta Macho Stadler, Las bandas de Möbius de Jaizkibel, ZTFNews.org, 11 marzo 2014

Nota: Muchas gracias a Carlos Galán por permitir utilizar las imágenes incluidas en sus artículos.

Sobre la autora: Marta Macho Stadler es profesora de Topología en el Departamento de Matemáticas de la UPV/EHU, y colaboradora asidua en ZTFNews, el blog de la Facultad de Ciencia y Tecnología de esta universidad.

Descubren en India la planta fosilizada más antigua: 1.600 millones de años

14895114294635Radiografía (con colores falsos) del fósil de alga roja. STEFAN BENGTSONUN

Un fósil (posiblemente un alga roja) muestra que la vida multicelular surgió antes de lo que se creía.
AMADO HERRERO

14/03/2017 19:00Las formas de vida complejas podrían haber existido en el planeta mucho antes de lo que se creía. El hallazgo de fósiles de algas rojas con una antigüedad de 1.600 millones de años, retrasa en 400 millones de años la aparición de organismos multicelulares en el árbol de la evolución. El descubrimiento, realizado por Investigadores del Museo Nacional de Historia de Suecia, se ha publicado este martes en la revista PLOS Biology.

Los dos tipos de fósiles hallados en rocas sedimentarias cerca de la localidad de Chitrakoot (India), suponen las formas de vida compleja más antiguas encontradas hasta el momento. El primero tiene forma de hilo, mientras que el segundo está compuesto por tejidos carnosos. Los especialistas suecos pudieron distinguir, en el interior de este último, estructuras internas y fuentes celulares características de este tipo de algas. Estas fuentes celulares son en realidad haces de filamentos que forman el cuerpo de tejidos carnosos.

Alga roja

La identificación de restos tan antiguos, en los que no existen trazas de ADN, es complicada y rara vez definitiva. “A medida que nos remontamos en el tiempo nos encontramos con mayores diferencias con las especies actuales y se hace más probable tratar con variedades extintas”, aclara Stefan Bengtson, profesor emérito de Paleozoología en el Museo de Historia Natural sueco.

Para una identificación más precisa, analizaron el interior del fósil utilizando microscopia tomográfica de rayos X de fuente sincrotrón, una nueva técnica que permite escanear los fósiles en tres dimensiones. “Las características coinciden con la morfología y la estructura de las algas rojas”, señala el investigador.

Gracias a esta tecnología se han podido observar también cloroplastos, un tipo de estructuras celulares que en los organismos complejos se ocupan de la fotosíntesis, lo que confirma que se trata vida multicelular. Asimismo, se detectaron otros conjuntos distintivos en el centro de las paredes celulares que, de acuerdo con los investigadores, coinciden con las que presentan las algas rojas. El proceso de datación, sin embargo, es mucho más exacto. “Se han utilizado técnicas radiométricas verificadas en varios laboratorios independientes, usando diferentes enfoques para fechar los depósitos de los fósiles, así como las rocas adyacentes”, afirma Bengtson.

Reorganizando el árbol de la evoluciónHace sólo unas semanas, un equipo del University College de Londres (UCL) hizo público el hallazgo en Canadá del fósil del organismo vivo más antiguo que se conoce, con una antigüedad de 3.800 millones de años. Sus descubridores sostienen, además, que formas de vida como la que hallaron en Quebec podrían haber ocupado rocas sedimentarias desde mucho antes incluso, unos 4.280 millones de años. Esto retrasaría cientos de millones de años la aparición de los primeros organismos unicelulares, formados a partir de células carentes de un núcleo (procariotas).

Por otro lado, la aparición de organismos complejos eucariotas, como las algas rojas, se había documentado hace 1.200 millones de años, 400 millones más tarde de lo que sugieren los fósiles hallados en la India. Los organismos multicelulares complejos, no serían comunes en el planeta hasta hace aproximadamente 550 millones de años, en la llamada explosión cámbrica. “Los nuevos hallazgos sugieren que seres multicelulares avanzados aparecieron al menos 1000 millones de años antes de la explosión cámbrica”, señala Bengston.

Los restos hallados en la India estaban incrustados en grupos de cianobacterias fosilizados en roca sedimentaria. Según explica Bengston “estas estructuras con forma de almohada forman las construcciones conocidas como estromatolitos”. Precisamente a este mismo tipo de organismos pertenecen los que, hasta este año, estaban considerados los organismos más antiguos conocidos, hallados en Warrawoona (Australia) y datados hace 3.500 millones de años.

De confirmarse los dos hallazgos, publicados por los investigadores suecos e ingleses, los conocimientos que tenemos sobre las primeras ramas del árbol de la vida podrían necesitar una revisión. “Estos descubrimientos suponen retrasar el reloj en acontecimientos evolutivos capitales”, concluye el investigador.

Fuente: http://www.elmundo.es/ciencia/2017/03/14/58c8249ee2704e82588b46b4.html